Biotransport Phenomena (3 Credits)

Instructor
Lidan YOU (youlidan@mie.utoronto.ca), Dept. of Mechanical & Industrial Engineering, University of Toronto, Toronto Canada

Synopsis
The course introduces the physical factors governing the transport of momentum, heat and mass, and how they operate in biological systems. Students will learn how to quantify the transport of these quantities by using basic equations of fluid mechanics (mass conservation, Bernoulli, generalized Bernoulli) and of heat and mass transfer (convection-diffusion equation). The course covers examples such as gas exchange in lung, inter cellular signal transport in bone, blood flow in cardiovascular system, heat exchange in human body, and chemotransport and momentum transport in several in vitro experimental systems. Student will be assigned pertinent research papers on bio-transport and will be required to present their understanding and analysis of the work done.

Offering
2015 Julmester

Audience
Year 3 & 4 Undergraduate and Graduate Students

Classroom
Room xxx, Teaching Bldg. No. XX, Peking University

Schedule
Class: 2-5 PM, M-F, July 6-24, 2015; **Final Exam:** 2-5 PM, July 25, 2015

Objectives
- To understand the physical factors governing the transport of momentum, heat and mass, and how these factors operate in biological systems.
- To develop the ability to quantify the transport of these quantities by using basic equations of fluid mechanics (mass conservation, Bernoulli, generalized Bernoulli) and of heat and mass transfer (convection-diffusion equation).

Syllabus

INTRODUCTION
- What is Biotransport?
- Stresses
- Fluid Properties
- Units
- Fluid Kinematics

CONTROL VOLUME APPROACH
- Control Volumes
- Reynolds Transport Theorem
- Mass conservation
- Control volume form of momentum equation

DIFFERENTIAL APPROACH
- Fluid Statics
- Buoyance
- Fluid Rheology
- Continuity Equation
- Navier-Stokes Equation
- Euler and Bernoulli Equation

DIMENSIONAL ANALYSIS
- Pi Theorem
- Similitude

REAL FLOWS
- External Flow: Boundary Layer Theory
- External Flow: Turbulent Boundary Layers
- External Flow: Drag and Drag Coefficient
- Inner Flow: Laminar Flow in Conduits
- Inner Flow: Turbulent Flow in Conduits–Moody Chart
- Inner Flow: Generalized Bernoulli Equation

MASS TRANSFER
- Mass Fluxes
- Governing Equations
- Boundary Conditions
- Steady Diffusion
- Convective Mass Transfer
- Concentration Boundary Layer
- Mass Transfer in Ducts

HEAT TRANSFER
- Introduction
- Combined Heat Transfer
- Energy Equation
- Convective Heat Transfer

STUDENT PRESENTATIONS

Text

Grading
<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm</td>
<td>25%</td>
</tr>
<tr>
<td>Presentations</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>45%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>