Advanced Control Systems (3 Credits)

现代控制系统

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Iven MAREELS (i.mareels@unimelb.edu.au) Melbourne School of Engineering, University of Melbourne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ying TAN (yingt@unimelb.edu.au) Melbourne School of Engineering, University of Melbourne</td>
</tr>
</tbody>
</table>

Synopsis

This subject provides an introduction to modern control theory with a particular focus on state-space techniques and optimal control. Students will study topics including:

- System modelling, state-space models, Lyapunov stability theory, and linearization;
- Controllability and observability of linear-time-invariant system, state feedback and pole placement, output feedback and observer design;
- Linear quadratic regulators, moving-horizon predictive control with constraints, and dynamic programming.

This material is complemented by the use of software tools (e.g. MATAHB/ Simulink) for computation and simulation.

Offering

2015 Julmester

Audience

Year 3 & 4 Undergraduate and Graduate Students

Classroom

Room xxx, Teaching Bldg. No. XX, Peking University

Schedule

Class: 2-5 PM, M-F, July 6–24, 2015; Final Exam: 2-5 PM, July 25, 2015

Objective

On completing this subject the student should be able to:

- Apply fundamental state-space techniques in the analysis and design of linear feedback control systems, as they arise in a variety of contexts;
- Formulate control engineering problems in terms of optimising an objective function subject to constraints;
- Use software tools to simulate and design the linear control systems.

Topics

Part 1: State-space modelling

- linear time-invariant systems
- nonlinear time-varying systems
- linearization

Part 2: Properties of linear time-invariant systems: controllability and observability

Part 3: Controller design and implementation

- Design full state feedback controller using pole-placement

Part 4: Internal model principle to track a reference or reject a disturbance

Part 5: Optimal control

- Optimization problem
- Motivation of optimal control
- Two methods to solve optimal control problem
- LQR problem and its solution

Part 6: Model Predictive Control

References

2. Feedback Control of Dynamic Systems. G. Franklin et al. 5th ed. Addison-Wesley
5. Feedback Systems: An Introduction for Scientists & Engineers

Grading

<table>
<thead>
<tr>
<th>Homework Assignment</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 1</td>
<td>10%</td>
</tr>
<tr>
<td>HW 2</td>
<td>10%</td>
</tr>
<tr>
<td>Workshop</td>
<td>20%</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>10%</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Assessment</td>
<td>10%</td>
</tr>
<tr>
<td>Final Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Attendance & Discussion</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>